Viscoelastic Behavior of Tissues and Implant Materials: Estimation of the Elastic Modulus and Viscous Contribution Using Optical Coherence Tomography and Vibrational Analysis

نویسندگان

  • Ruchit G. Shah
  • Frederick H. Silver
چکیده

Recently, we have reported use of Optical Coherence Tomography (OCT) and vibrational analysis to determine the resonant frequency of a material from which the moduli of decellularized dermis, pig skin, silicone rubber and chemically modified dermis were calculated. In this paper, we present data on viscoelastic mechanical properties of extracellular matrices and silicone rubber at frequencies above and below the resonant frequency. The results reported suggest that measurement of the modulus at the resonant frequency of a viscoelastic material provides a good estimate of the elastic modulus while measurements below and above the resonant frequency contain a larger viscous contribution to the viscoelastic behavior. It is concluded that at low strains the high viscous contribution to the modulus of skin may provide a mechanism for energy dissipation of impact loads while the low viscous contribution to the modulus of skin at the resonant frequency and above may promote mechanotransduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An approach to viscoelastic characterization of dispersive media by inversion of a general wave propagation model

In the characterization of elastic properties of tissue using dynamic optical coherence elastography, shear/surface waves are propagated and tracked in order to estimate speed and Young's modulus. However, for dispersive tissues, the displacement pulse is highly damped and distorted during propagation, diminishing the e®ectiveness of peak tracking approaches, and leading to biased estimates of ...

متن کامل

Effect of Polymer Grade and Plasticizer Molecular Weights on Viscoelastic Behavior of Coating Solutions

Film coating solutions containing different grades of HPMC (E5, E15 and E50) with and without polyethylene glycol (with various molecular weights) were examined by an oscillatory method, using Haake CV 100 rheometer. Fundamental rheological parameters (?, G? and G² ) were measured over the frequency range from 0.04 to 2 Hz. The variation with frequency of the loss tangent (a ratio of viscous to...

متن کامل

Effect of Polymer Grade and Plasticizer Molecular Weights on Viscoelastic Behavior of Coating Solutions

Film coating solutions containing different grades of HPMC (E5, E15 and E50) with and without polyethylene glycol (with various molecular weights) were examined by an oscillatory method, using Haake CV 100 rheometer. Fundamental rheological parameters (?, G? and G² ) were measured over the frequency range from 0.04 to 2 Hz. The variation with frequency of the loss tangent (a ratio of viscous to...

متن کامل

Analysis of Five Parameter Viscoelastic Model Under Dynamic Loading

The purpose of this paper is to analysis the viscoelastic models under dynamic loading. A five-parameter model is chosen for study exhibits elastic, viscous, and retarded elastic response to shearing stress. The viscoelastic specimen is chosen which closely approximates the actual behavior of a polymer. The module of elasticity and viscosity coefficients are assumed to be space dependent i.e. f...

متن کامل

Calculation of tunnel behavior in viscoelastic rock mass

Wall displacements and ground pressure acting on the lining of a tunnel increase with time. These time-dependent deformations are both due to face advance effect and to the time-dependent behavior of the rock mass.  Viscoelastic materials exhibit both viscous and elastic behaviors. Thorough this study, the effect of different linear viscoelastic models including Maxwell, Kelvin and Kelvin-Voigt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017